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Non-axisymmetric cavities are widely used as standard blackbody sources for radiation thermometry. The
integrated effective emissivity is central to the blackbody design. Integrated effective emissivities are
numerically calculated for non-isothermal, non-axisymmetric cavities. The average relative deviation is
0.087% when compared with Monte-Carlo results, indicating that this method can accurately calculate
the integrated effective emissivities for non-isothermal, non-axisymmetric cavities. The effects of the
wavelength, temperature uniformity, and bottom inclination angle are then analyzed.
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Methods that accurately predict the integrated effective
emissivities of blackbody designs are needed. Many
computational methods have been developed for ax-
isymmetric cavities such as conical, cylindrical and
cylindro-conical[1−8], cylindrical with a re-entrant cone
bottom[9], and cylindrical and cylindro-conical cavities
with grooved walls[10−12]. Non-axisymmetric cavities
are also widely used as standard blackbody sources
for radiation thermometry[13−17]. However, very few
studies have reported on methods that analyze non-
axisymmetric cavities because of the complex computa-
tions for configuration factors. Prokhorov et al. com-
puted the integrated effective emissivities of isother-
mal non-axisymmetric cavities for the first time in
2004[18] and of non-isothermal non-axisymmetric cavi-
ties in 2010[19] using the Monte Carlo method. Although
effective, the Monte Carlo method is time-consuming and
lacks validation for the integrated effective emissivity of
non-axisymmetric cavities.

Computational methods require verification to ensure
computational accuracy because the experimental deter-
mination of the integrated effective emissivity is lim-
ited to restricted geometries, spectral ranges, and cav-
ity temperatures[18]. Duan et al.[20] reported integrated
effective emissivity computations for isothermal non-
axisymmetric cavities using the finite element method;
these results agreed well with those of the Monte Carlo
method. However, real cavities are not isothermal. Thus,
isothermal approximations are insufficient. Therefore,
this letter presents a natural extension of the isothermal
non-axisymmetric cavity computations to non-isothermal
non-axisymmetric cavities. The computational results
are compared with previous Monte Carlo results[19],
which are the only known findings for the integrated
effective emissivity of non-isothermal, non-axisymmetric
cavities.

Figure 1 shows the geometric configuration and tem-
perature distribution of a cavity. The cavity is a cylinder
with an inclined bottom. R is the cavity aperture radius,
H is the cavity length, Hd is the distance from the detec-

tor to the cavity aperture, Rd is the detector radius, and
β is the bottom inclination angle. The inclined bottom
extends from zmin to −zmin. Dimensionless geometrical
parameters were used because of the scaling properties.
R was set to 1 for simplicity. The temperature distribu-
tion is[19]

T (Z) =

{

Tb, Zmin 6 Z 6 Zb

Tb +
Tb − Ta

Zb − Zmax
(Z − Zb), Zb 6 Z 6 Zmax

.

(1)

The material for the entire inner wall of the cavity was
assumed to be uniform and grey so that the radiating
cavity surfaces were spatially uniform and independent
of the wavelength and to ensure that the surfaces exhibit
diffused emissions and reflections.

The local directional spectral effective emissivity of a
non-isothermal cavity in a non-refractive environment is

ελ,e(λ,
→

ξ ,
→

ω, Tref) =
Lλ(λ,

→

ω,
→

ω)

Lλ,b(λ, Tref)
, (2)

where Lλ is the spectral radiance emitted from a point
→

ξ with a local temperature T
(
→

ξ
)

on the cavity wall at a

particular wavelength λ and in the direction of
→

ω ; Lλ,b is
the spectral radiance of a perfect blackbody at a reference
temperature Tref at the same wavelength and direction.
The bottom center temperature of the cavity was used
as the reference temperature.

The integrated effective emissivity is defined as

ελ,e(λ, Tref , Rd, Hd) =
Φλ(λ, Rd, Hd)

Φλ,b(λ, Tref , Rd, Hd)
, (3)

where Φλ(λ, Rd, Hd) is the spectral radiant flux falling
onto the black detector that is irradiated by the ra-
diating cavity surfaces, and Φλ,b(λ, Tref , Rd, Hd) is the
spectral radiant flux falling onto the same detector that is
irradiated by a cavity with perfectly black walls. The in-
tegrated effective emissivity can be derived from Eq. (2)
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Fig. 1. Cavity geometry and temperature distribution.

Fig. 2. Computational grid.

via integration over the appropriate areas and solid an-
gles.

The numerical method for non-isothermal cavities is
similar to that used in Ref. [20] for isothermal cavities.
The outgoing flux from the radiating cavity surface con-
sists of the flux that is intrinsically emitted and that re-
flected after incidence from the other radiating cavity
surfaces. Therefore, the spectral outgoing radiant flux of
a radiating cavity surface element is expressed as

Jλ,k = Eλ,k + (1 − ελ,k)
N

∑

j=1

Fk,jJλ,j , (4)

where Eλ,k is the spectral radiant flux emitted by a ra-
diating surface element, ελ,k is the spectral emissivity
of the radiating cavity surface, Fk,j is the configuration
factor for two surface elements, and N is the number of
surface elements. The local spectral radiant flux is calcu-
lated by iteratively solving Eq. (4). The spectral radiant
flux that falls onto the black detector irradiated by the
radiating cavity surfaces is

Φλ(λ, Rd, Hd) =

N
∑

k=1

Fk,dJλ,k, (5)

where Fk,d is the configuration factor for one surface el-
ement and the detector. The spectral radiant flux falling
onto the same detector that is irradiated by the cavity
with perfectly black radiating surfaces is given by

Φλ,b(λ, Tref , Rd, Hd) =

N
∑

k=1

Fk,dJλ,k,b, (6)

where Jλ,k,b is the spectral outgoing radiant flux of a per-
fect black surface element. Thus, the integrated effective

emissivity is calculated as

ελ,e(λ, Tref , Rd, Hd) =
Φλ(λ, Rd, Hd)

Φλ,b(λ, Tref , Rd, Hd)

=

N
∑

k=1

Fk,dJλ,k

N
∑

k=1

Fk,dJλ,k,b

. (7)

The configuration factors were calculated using the
surface-to-surface model in ANSYS FLUENT according
to the geometry and the grid.

Given that the emissivity of a non-isothermal cavity
changes with the wavelength, the radiant flux should be
calculated using Planck’s Law. However, ANSYS FLU-
ENT can only calculate the radiant flux over the en-
tire spectrum using the Boltzmann formula. Therefore,
to calculate the radiation transport at a specific wave-
length, the radiating cavity surface temperature of an
inner wall element in FLUENT was set to an equivalent
temperature Te. Thus, the most crucial factors such as
the geometry and temperature distribution are consid-
ered, and the heat flux at this element, as calculated in
FLUNET, is equal to the spectral radiant flux calculated
using Planck’s Law. In this process, the radiation trans-
port at each spectrum can still be modeled using the
available FLUENT model. The transformation equation
is

σT 4
e =

c1λ
−5

exp( c2

λT
) − 1

⇒ Te = 4

√

c1λ−5

σ exp( c2

λT
) − 1

, (8)

where T is the real radiating surface temperature,
Te is the transformed radiating surface temperature,
c1 = 3.74177118(19)×10−16 W·m2, c2 = 1.4387752(25)×
10−2 m·K, and σ = 5.670400(40) × 10−8 W·m−2 K−4.
The radiating cavity surface temperature distribution
was defined using a UDF.

Figure 2 shows the computational grid. The detector
and the surrounding media between the detector and
the cavity aperture do not affect the radiative transfer.
Therefore, the detector and the surrounding emissivity
were set to 1, and the temperature was set to 0 K.

The integrated effective emissivities of non-isothermal
axisymmetric cylindrical cavities with various λ and zb

were calculated at Rd = 1, H = 8, Hd = 0, ε = 0.7,
Tb = 1 000, and Ta = 990 to validate the developed
method. Table 1 shows the computational results for
various numbers of elements at zb = 0. The average
relative difference is 0.034%, indicating that the present
number of elements is sufficient to ensure high accuracy
for adoption in the calculations. Figure 3 compares the
results calculated using the present method and those of
the Monte Carlo method. The average relative difference
is 0.096%, indicating that the present method is accu-
rate.

Figure 4 shows the results for non-isothermal non-
axisymmetric cavities for various λ, zb, and β at Rd = 1,
H = 8, Hd = 0, ε = 0.7, Tb = 1 000, and Ta = 990. The
results are again compared with the Monte-Carlo results.
The average relative difference is 0.087%, which confirms
that the present method can effectively predict the
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Table 1. Grid Independence

λ (µm)
267823 829345 Relative

Elements Elements Difference (%)

1 0.813462 0.813168 0.0361

3 0.880196 0.879894 0.0343

5 0.893332 0.893028 0.0340

7 0.898693 0.898389 0.0338

9 0.901408 0.901104 0.0337

Fig. 3. Method validation.

Fig. 4. Computational results.

integrated effective emissivities of non-isothermal, non-
axisymmetric cavities. The results also show that the
integrated effective emissivity increases with wavelength
and temperature uniformities; however, the effect of
temperature uniformity decreases at longer wavelengths.
The cavity bottom inclination angle has negligible effect
on the integrated effective emissivities.

In conclusion, integrated effective emissivities
are numerically calculated for non-isothermal, non-
axisymmetric cavities. The results are consistent with
those of the Monte-Carlo method. The average relative
difference between the two results is 0.087%, which in-
dicates that this method can effectively calculate the
integrated effective emissivities of non-isothermal, non-

axisymmetric cavities. The integrated effective emis-
sivity increases with the wavelength and temperature
uniformities. However, the effect of temperature uni-
formity is negligible at long wavelengths. The cavity
bottom inclination angle has little effect on the inte-
grated effective emissivities.
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